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Why Supervision?

Supervision allows us to tailor the network representation to 
the task we actually care about!

E.g:  Are you going to use the representations for labeling?  

=> Include training labels



Power of Supervision

Graph Layout Unsupervised 
Representation

(DeepWalk)

Supervised 
Representation

(GCN)
[Kipf & Welling’17, used with permission]

Graph: Zachary’s Karate Club
Labels: Community Ids



4

Original 
GNN

Gori et al. 
(2005)

GG-NN
Li et al. 

(ICLR 2016)

(slide inspired by Thomas Kipf’s talk on GNNs)

GraphSAGE
Hamilton et 

al.(NIPS 2017)

MoNet
Monti et al.

(CVPR 
2017)Neural MP
Gilmer et al.
(ICML 2017)

Relation Nets
Santoro et al.(NIPS 

2017)

“DL on graph explosion”

Programs as Graphs
Allamanis et al.

(ICLR 2018)
NRI

Kipf et al.
(ICML 2018)GAT

Veličković et al. 
(ICLR 2018)

…

A brief history of Graphs and Neural Networks

“Spectral methods”

“Graph Embedding methods”

DeepWalk
Perozzi et al. 
(KDD 2014)

Planetoid
Yang et al. 

(ICML 2016)

Spectral 
Graph CNN
Bruna et al. 
(ICLR 2015)

ChebNet
Defferrard et 

al. (NIPS 
2016)

GCN
Kipf & Welling
(ICLR 2017)

SocDim
Tang et al. 

(KDD 2009)

node2vec
  Grover et al. 
(KDD 2016)

HARP
  Chen et al. 
(AAAI 2018)

SDNE
  Wang et al. 
(KDD 2016)

HOPE
  Ou et al. 

(KDD 2016)

DRNE
  Tu et al. 

(KDD 2018)

“Graph Neural Networks”



In this Section
1. Semi-Supervised Learning w/ Graph Embeddings

a. Unsupervised Embeddings + Training Data
b. Graphs as Regularizers
c. Graph Convolutional Approaches

i. Overview 
ii. GCNs
iii. Extensions

2. Supervision as Inspiration
a. The Graph as Supervision
b. Watch Your Step



Semi-supervised Learning on Graphs

Problem Definition:

● INPUT:
○ Adjacency Matrix, A
○ Features, X
○ Partially Labeled Nodes

● OUTPUT:
○ Labels for all Nodes, Y



Semi-supervised Graph Representation Learning

Standard SSL Definition:

● INPUT:
○ Adjacency Matrix, A
○ Features, X
○ Partially Labeled Nodes

● OUTPUT:
○ Labels for all Nodes, Y

Methods We’ll Focus On:

● INPUT:
○ Adjacency Matrix, A
○ Features, X
○ Partially Labeled Nodes

● OUTPUT:
○ Representations Φ for each Node

■ Correlated with the labels
○ Labels for all Nodes, Y



Adding Supervision to
 Unsupervised Embeddings



The Straightforward Approach
Given: We already know how to create good 
embeddings for a graph.  

Idea: Why not “put a DNN on it”?

1. Embed A → Φ
2. Pass through 0 or more hidden layers
3. Add Output Layer

The internal layers of this DNN are 
semi-supervised graph representations.

Φi

H1

Node 
embedding

Hidden 
Layer(s)

Output Layer

Hk



Challenges with “Put a DNN on it”
Problem 1:  Maybe something went wrong with the 
embedding process (bad initialization, 
hyper-parameters, etc).  

We’ve already thrown out the graph!

Φi

H1

Node 
embedding

Hidden 
Layer(s)

Output Layer

Hk



Potential Problem: Generalization
Problem 2: How can we loosen the assumption 
on Φ’s quality.

One way to do this is might be to fine-tune each 
node’s Φi as we train.
(Doesn’t generalize well, and can easily overfit - testing data 
never receive Φi updates. ) Φi

H1

Node 
embedding

Hidden 
Layer(s)

Output Layer

Hk



Joint Loss Models
Idea: NN are flexible, can we combine?

1. Require the embeddings stay good
a. (Similar to a reconstruction loss)

2. Share representations between loss 
terms

Φi

H1

Hk
Φi( )Φj,

Loss = Lsupervised + Lunsupervised



Planetoid-T Model
Application of what we’ve 
discussed so far.

1. Features and Node 
Embeddings combined for a 
supervised loss.

2. Unsupervised loss keeps the 
embeddings good Φi

H1
Φi( )Φj,

Loss = Lsupervised + Lunsupervised

Xi

Hx

[Yang, et al., ICML 2016]



Challenges with Joint Loss Models
Problem 1: How to balance the two 
terms of the loss?

Φi

H1

Hk
Φi( )Φj,

Loss = Lsupervised + Lunsupervised



Challenges with Joint Loss Models
Problem 1: How to balance the two 
terms of the loss?

Problem 2: Model only has single global 
hyper-parameter to control combination 
for all nodes.

Φi

H1

Hk
Φi( )Φj,

Loss = Lsupervised + Lunsupervised



Challenges with Joint Loss Models
Problem 1: How to balance the two 
terms of the loss?

Problem 2: Model only has single global 
hyper-parameter to control combination 
for all nodes.

Problem 3: We’re still throwing away the 
graph...

Φi

H1

Hk
Φi( )Φj,

Loss = Lsupervised + Lunsupervised



Graphs as a Regularizer (aside)



Graph Regularization for Label Assignment
Significant body of work on adding a graph regularization to an existing model. 

E.g. [Zhu, et al, 2003] combine a classifier loss L0 with a graph-regularizer loss 
Lreg that encourages similar output for connected nodes

Another example is Neural Graph Machines [Bui et al, WSDM’18], which uses 
graph similarity as a regularization in a hidden (latent) layer

This is outside the scope of today’s tutorial, but it's good to be aware of.



Outline
1. Semi-Supervised Learning w/ Graph Embeddings

a. Unsupervised Embeddings + Training Data
b. Graphs as Regularizers
c. Graph Convolutional Approaches

i. Overview 
ii. GCNs
iii. Extensions

2. Supervision as Inspiration
a. The Graph as Supervision
b. Watch Your Step



Graph Convolutional Methods



The Big Idea

1. Formulate a joint objective over the graph and the labels
2. Jointly learn representation and label predictions.

Methods here explicitly spread information over the graph 
while learning their representations.
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Speech data

Natural language 
processing (NLP)

…

Deep neural nets that exploit:
- translation invariance (weight sharing)
- hierarchical compositionality

The success story of deep learning

[original slide: Thomas Kipf, used w/ permission]
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2D grid

1D grid

Recap: Deep learning on Euclidean data

[original slide: Thomas Kipf, used w/ permission]
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Convolutional neural networks (CNNs)

(Animation by 
Vincent Dumoulin) (Source: Wikipedia)

or recurrent neural networks (RNNs)

(Source: Christopher Olah’s blog)

Recap: Deep learning on Euclidean data

[original slide: Thomas Kipf, used w/ permission]
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(Animation by 
Vincent Dumoulin)

Single CNN layer with 3x3 filter:
…

Update for a single pixel:

● Transform neighbors individually
● Add everything up

Full update:

Convolutional neural networks (on grids)

[original slide: Thomas Kipf, used w/ permission]



Graph Convolutional Networks
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Use convolution theorem to generalize convolution to graphs.

Main idea:

A convolution corresponds to a multiplication in the Fourier domain.
Loosely speaking:

Spectral graph convolutions

[original slide: Thomas Kipf, used w/ permission]
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[Figure: Bronstein et al., 2016]: eigenvectors of graph Laplacian

Eigenvectors of the graph Laplacian

[original slide: Thomas Kipf, used w/ permission]
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[Figure: Bronstein et al., 2016]

Recipe for CNN on graphs [Bruna et al., 2014]:
Stack multiple layers of spectral graph convolutions + non-linearities

CNNs with spectral graph convolutions

[original slide: Thomas Kipf, used w/ permission]
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[Figure: Bronstein et al., 2016]

Recipe for CNN on graphs [Bruna et al., 2014]:
Stack multiple layers of spectral graph convolutions + non-linearities

CNNs with spectral graph convolutions

[original slide: Thomas Kipf, used w/ permission]
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Consider this undirected graph: Calculate update for node in red:

  How is this related to spectral CNNs on graphs? 
➡ Localized 1st-order approximation of spectral filters [Kipf & Welling, ICLR 2017]

Update
rule:

: neighbor indices

: norm. constant
   (per edge)

(first proposed in [Scarselli et al. 2009])

CNNs on graphs with spatial filters

[original slide: Thomas Kipf, used w/ permission]
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with                                 

Or treat self-connection in the same way:

with                                          

Vectorized form

[original slide: Thomas Kipf, used w/ permission]



Block View of the GCN Model

[Kipf & Welling, ICLR 2017]

X W0

Node 
Labeling

1st step 2nd step

softmaxReLU
…

Normalized
Graph

* H1 W1
ReLU

*
… 



Graph View of GCN Model

At every iteration, the model 
aggregates information from 
one hop deeper.

vi

Z

Z

Z

Z

Z

Z

Step 1 Step 2 Step 3



Potential Limitations of the GCN Model

1. Fixed Aggregation Function
2. Scalability
3. Treats all Graph Edges equally
4. Effective Depth



GCN Extensions



GraphSAGE
SAGE = SAmple AggreGatE.

Versus GCN:

Stochastic sampling

Skip Layers

L2 norm layer

Flexible aggregation 
(commonly mean still)

[Hamilton, et al., NIPS 2017]



Block View of the GCN Model

[Kipf & Welling, ICLR 2017]

X W0

Node 
Labeling

1st step 2nd step

softmaxReLU
…

Normalized
Graph

* H1 W1
ReLU

*
… 



Block View of the GraphSAGE Model

[Hamilton, et al., NIPS 2017]

A X W0

Node 
Labeling

1st step 2nd step

softmaxReLU
…g H1 W1

ReLU
… g

Sample Sample

Introduces Sample and Aggregate
g() can be Average or LSTM



Graph Attention Networks (GAT)

Problem:  GCNs assume the 
importance of the edges in the graph 
are equal.

Idea:  What if we add a learnable 
attention weight for each edge eij?

[Veličković, et al., ICLR 2018]

vi

Z

Z

Z

eij

eik



Block View of the GCN Model

[Kipf & Welling, ICLR 2017]

X W0

Node 
Labeling

1st step 2nd step

softmaxReLU
…

Normalized
Graph

* H1 W1
ReLU

*
… 



Block View of the GAT Model

X W0

Node 
Labeling

1st step 2nd step

softmaxReLU

Normalized
Graph

… 
α0

*

○

H1 W1
ReLUα1

*

○

[Veličković, et al., ICLR 2018]



Scalable GCNs

Problem:  How to distribute a GCN over billion node graphs?

Idea:  Sampling neighbors, local convolution, and M/R node 
embeddings.

[Ying, et al., KDD 2018]



Block View of the GCN Model

[Kipf & Welling, ICLR 2017]

X W0

Node 
Labeling

1st step 2nd step

softmaxReLU
…

Normalized
Graph

* H1 W1
ReLU

*
… 



Block View of the Scalable GCN Model

A

X W0

Node 
Labeling

1st step 2nd step

softmaxReLU
…H1 W1

ReLU
… g

Random Walk Graph 
Transformation

g

[Ying, et al., KDD 2018]
After training, inference via MapReduce pipeline.
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Residual connection

GCN: How deep is deep enough?

[original slide: Thomas Kipf, used w/ permission]



Graph Convolution VS Random Walks

Consider special case if σ is “identity” and W(0) is identity matrix:

47

What if we explicitly feed-in Random Walk statistics into GCNs?

Becomes equivalent to 1-step random walk. In general:

[Abu-el-Haija, et al., 2018B]



N-GCN: Multi-scale Graph Convolution for 
Semi-supervised Node Classification
● Make many instantiations of 

GCN modules.
● Feed each some power of 

Adjacency matrix.
● Concatenate output of all 

GCN instantiations, feed into 
fully-connected layers, 
producing node labels.

48
Fig: Architecture of Network of GCNs (N-GCN)

[Abu-el-Haija, et al., 2018B]



Graph Convolution on Random Walks: 
Semi-supervised node classification results

49[Abu-el-Haija, et al., 2018B]



● Accuracy VS random walk steps (K) VS replication factor (r)
Sensitivity Analysis

50

# 
of

 w
al

k 
st

ep
s

# of experts [Abu-el-Haija, et al., 2018B]



Experiment: Input Perturbations [c]

Maliciously removing features from X causes models performance to drop. 
Random walk methods do better and performance gap widens with more 
removal

51

Removing features degrades performance of baselines more than NGCN

N-GCN assigns more weight to further nodes when features are removed

[Abu-el-Haija, et al., 2018B]



In this Section
1. Semi-Supervised Learning w/ Graph Embeddings

a. Unsupervised Embeddings + Training Data
b. Graphs as Regularizers
c. Graph Convolutional Approaches

i. Overview 
ii. GCNs
iii. Extensions

2. Supervision as Inspiration
a. The Graph as Supervision
b. Watch Your Step



Looking Forward: Graphs as Supervision



Graph as Supervision: Loss Function

One can think of the known edges as supervision.

E.g., in Link Prediction, we assume that graph is partially observed, with 
goal of completing it: ranking missing (hidden) positive edges above 
negative ones.

It is possible to train unsupervised embeddings using an edge function 
g(u, v) ∈ {0, 1}, which outputs 1 if an edge exists and 0 otherwise.

One such example is the Graph Likelihood objective, which is a 
“supervised” loss function [Abu-el-Haija, et al., CIKM 2017].



Probabilistic Graph Likelihood: Derivation
● Assume g : V x V → [0, 1] is an edge estimator.
● If g() is “accurate”, then likelihood below will equal to 1 

when evaluated on A:

55[Abu-el-Haija, et al., CIKM 2017]



Probabilistic Graph Likelihood: Derivation
● Assume g : V x V → [0, 1] is an edge estimator.
● If g() is “accurate”, then likelihood below will equal to 1 

when evaluated on A:

● Equation above can be written as:

56[Abu-el-Haija, et al., CIKM 2017]



Probabilistic Graph Likelihood: Derivation



Probabilistic Graph Likelihood: Derivation

58

Graph Likelihood

is frequency of u and v are co-visited in random walks.
i.e. is # of times that u is sampled in v’s context

[Abu-el-Haija, et al., CIKM 2017]



Context Distribution: Sampling Window

● What is             really ? 

59
Fixed Context Distribution

k

Random Walk 
Transition Matrix



Context Distributions
Training with DeepWalk yields (in expectation) co-visit statistics matrix:

60

Training with GloVe [Pennington, et al., EMNLP 2014] yields (in expectation) 
co-visit statistics matrix:

Which one is better? What do we choose for the context distribution?
● Option 1: Hyper-parameter approach (change with each dataset)
● Option 2: Learn them from the graph!



Context Distribution is a Hidden Hyper-parameter!

v

u

Graph

k =d(u,v)
Fixed Context Distribution

k

Problem: Distance in random walk (# hops) hardcoded as importance in many 

algorithms.



Watch Your Step: Learning Graph Embeddings 
Through Attention

v

u

Graph

k =d(u,v)
Fixed Context Distribution

Learnable Context

Parameters: Q1 ,..., QC

k

k

Problem: Distance in random walk (# hops) hardcoded as importance in many 

algorithms.

[Abu-el-Haija, et al., 2018A]



Learnable Context Distributions

Let’s parametrize the expectation with a real positive vector Q:

63

E.g. we can set: 

Under constraints:

Instead of hardcoding context distribution like previous work:

[Abu-el-Haija, et al., 2018A]



Learnable Context Distributions

64

Objective function:

Where the attention parameters in vector q=(q1 q2 … ) is only 
used for training  -- not inference  (its not part of the node 
embeddings L, R).

[Abu-el-Haija, et al., 2018A]



Context Distributions: What does Q learn?
● Different distribution for every graph

65

● Distributions agree with optimal, if we sweep window_size with node2vec.

[Abu-el-Haija, et al., 2018A]



Learning Context Distribution: Link Prediction Results

66[Abu-el-Haija, et al., 2018A]



Takeaways

1. Supervision can create embeddings that are good for a 
downstream task (e.g. node labeling)

2. Very active field of research 
3. Supervision can provide cool inspiration for better 

unsupervised methods
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What does it mean to represent a whole graph?
Moving from a representation over nodes to an embedding for an entire graph.

Node Representation
(DeepWalk)

Graph Representation
[Taheri, Gimpel, Berger-Wolf - 

KDD’18]



Traditional Method 1: Graph Matching
Many similarity methods defined over 
graphs, e.g.

Graph Edit Distance:

How many {node,edge} 
{insertions,deletions} are needed to 
transform one graph into another?

A B

C

A B

C

G1 G2

Edit distance (G1,G2) = 1

[A. Sanfeliu; K-S. Fu (1983)]



Traditional Method 2: Graph Kernels
Idea:  Define a kernel between graphs that 
captures their similarity.

Example:  Random Walk Graph Kernel:
Given a pair of graphs, perform random walks on 
both (at once), and count the number of matching 
walks. 

Pros:  Elegant mathematical formalism

Cons: Scalability (even efficient methods O(N^3))

[Vishwanathan et al, 2010]

direct product graph



Deep Graph Kernel
Idea:

Decompose graph into list of discrete 
substructures.  Learn similarity between 
substructures using Skipgram.

Structure considered:

1. Graphlets (i.e. Motifs)
2. Shortest Paths
3. Weisfeiler-Lehman Kernels

[P. Yanardag and S. Vishwanathan, KDD’15]

Counts of graph substructures

Learned substructure 
similarity matrix



PATCHY-SAN
Idea:  Linearize local graph structure, so 
traditional convolution can be applied.

Convolutional architecture to predict graph’s 
label (e.g. just like an image’s label).

Pros:
Leverage architecture from image classification

Cons:
Requires external graph linearization routine

 [Niepert et al, ICML 2016]



PATCHY-SAN: Algorithm Overview

1. Order nodes
2. Select Neighborhood
3. Linearize Neighborhood

a. 1-dimensional Weisfeiler-Lehman routine  
(heuristic)

4. Apply standard convolutional architecture
 [Niepert et al, ICML 2016]



DGCNN
Combine information from the Weisfeiler-Lehman kernel, with a pooling 
layer inspired by PATCHY-SAN.

[Zhang et al., AAAI’18]



Sequence Modeling for Graphs
Use an LSTM to encode observed 
similarity pairs from a graph.

1. Random Walks
2. Shortest Paths
3. Breadth First Search

The latent space of these models is a 
graph representation.

[Taheri, Gimpel, Berger-Wolf , KDD’18]



LSTM Sequence Encoding

[Original Slide, Aynaz Taheri, used with permission]
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