Semi-supervised Methods for Graph Representation

Modeling Data With Networks + Network Embedding: Problems, Methodologies and Frontiers

Ivan Brugere (University of Illinois at Chicago) Peng Cui (Tsinghua University) Bryan Perozzi (Google) Wenwu Zhu (Tsinghua University) Tanya Berger-Wolf (University of Illinois at Chicago) Jian Pei (Simon Fraser University) Bryan Perozzi bperozzi@acm.org

Why Supervision?

Supervision allows us to tailor the network representation to the task we actually care about!

E.g: Are you going to use the representations for labeling?

=> Include training labels

Power of Supervision

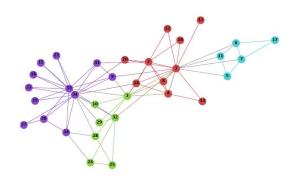
Graph: Zachary's Karate Club Labels: Community Ids

-0.6

-1.0

-1.2

·1.6



Graph Layout

0.5

1.0

1.5

2.0

2.5

-0.5

-1.0

0.0

Supervised Representation (GCN)

0.0

0.5

1.0

1.0

0.5

0.0

-0.5

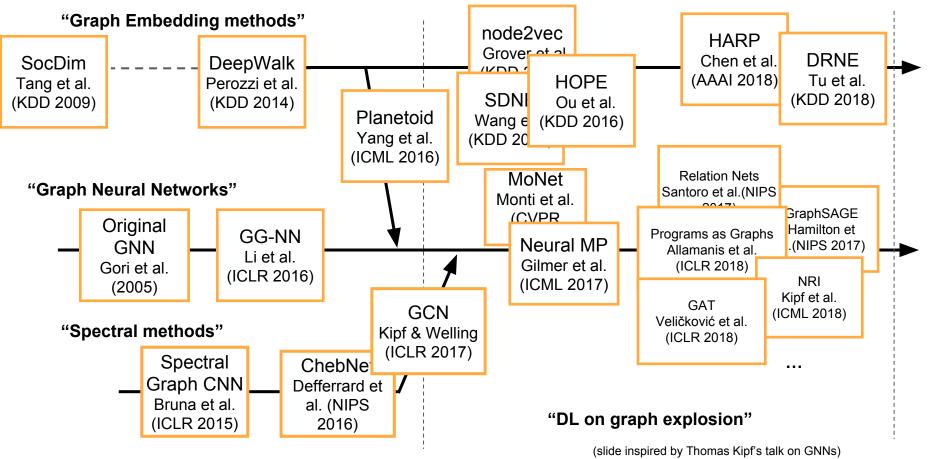
-1.0

-1.0

-0.5

[Kipf & Welling'17, used with permission]

A brief history of Graphs and Neural Networks



In this Section

1. Semi-Supervised Learning w/ Graph Embeddings

- a. Unsupervised Embeddings + Training Data
- b. Graphs as Regularizers
- c. Graph Convolutional Approaches
 - i. Overview
 - ii. GCNs
 - iii. Extensions
- 2. Supervision as Inspiration
 - a. The Graph as Supervision
 - b. Watch Your Step

Semi-supervised Learning on Graphs

Problem Definition:

- INPUT:
 - Adjacency Matrix, A
 - Features, X
 - Partially Labeled Nodes
- OUTPUT:
 - Labels for all Nodes, Y

Semi-supervised Graph Representation Learning

Standard SSL Definition:

- INPUT:
 - Adjacency Matrix, A
 - Features, X
 - Partially Labeled Nodes
- OUTPUT:
 - Labels for all Nodes, Y

Methods We'll Focus On:

- INPUT:
 - Adjacency Matrix, A
 - Features, X
 - Partially Labeled Nodes
- OUTPUT:
 - \circ Representations $oldsymbol{\Phi}$ for each Node
 - Correlated with the labels
 - Labels for all Nodes, Y

Adding Supervision to Unsupervised Embeddings

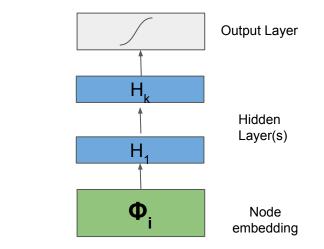
The Straightforward Approach

Given: We already know how to create good embeddings for a graph.

Idea: Why not "put a DNN on it"?

- 1. Embed $A \rightarrow \mathbf{\Phi}$
- 2. Pass through 0 or more hidden layers
- 3. Add Output Layer

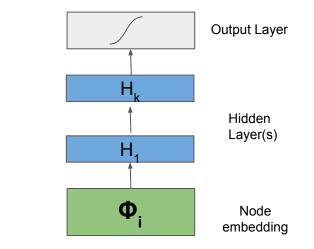
The internal layers of this DNN *are* semi-supervised graph representations.



Challenges with "Put a DNN on it"

Problem 1: Maybe something went wrong with the embedding process (bad initialization, hyper-parameters, etc).

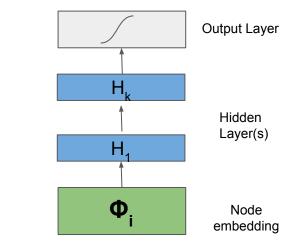
We've already thrown out the graph!



Potential Problem: Generalization

Problem 2: How can we loosen the assumption on Φ 's quality.

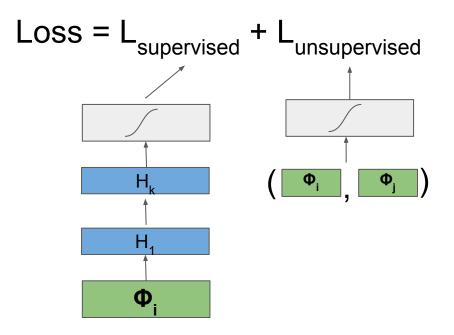
One way to do this is might be to fine-tune each node's Φ_i as we train. (Doesn't generalize well, and can easily overfit - testing data never receive Φ_i updates.)



Joint Loss Models

Idea: NN are flexible, can we combine?

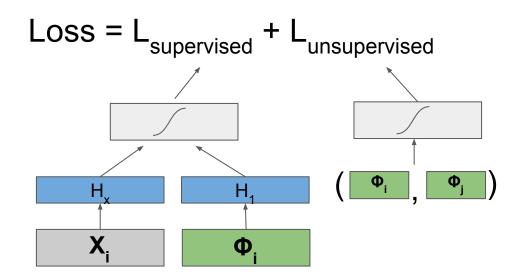
- 1. Require the embeddings stay good
 - a. (Similar to a reconstruction loss)
- 2. Share representations between loss terms



Planetoid-T Model

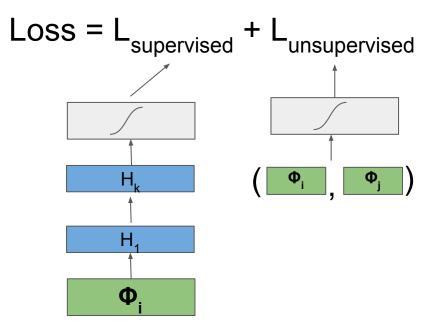
Application of what we've discussed so far.

- Features and Node Embeddings combined for a supervised loss.
- 2. Unsupervised loss keeps the embeddings good



Challenges with Joint Loss Models

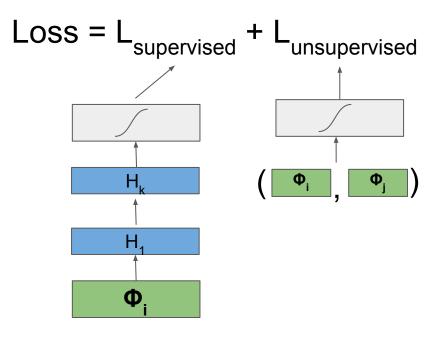
Problem 1: How to balance the two terms of the loss?



Challenges with Joint Loss Models

Problem 1: How to balance the two terms of the loss?

Problem 2: Model only has single global hyper-parameter to control combination for all nodes.

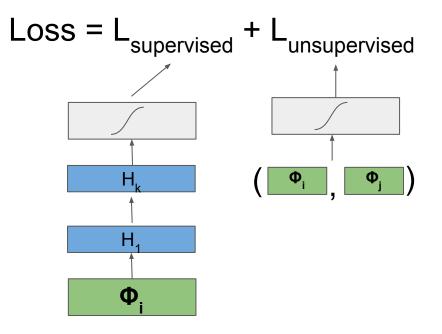


Challenges with Joint Loss Models

Problem 1: How to balance the two terms of the loss?

Problem 2: Model only has single global hyper-parameter to control combination for all nodes.

Problem 3: We're still throwing away the graph...



Graphs as a Regularizer (aside)

Graph Regularization for Label Assignment

Significant body of work on adding a graph regularization to an existing model.

E.g. [Zhu, et al, 2003] combine a classifier loss L_0 with a graph-regularizer loss L_{reg} that encourages similar output for connected nodes

$$\mathcal{L} = \mathcal{L}_0 + \lambda \mathcal{L}_{\text{reg}}, \quad \text{with} \quad \mathcal{L}_{\text{reg}} = \sum_{i,j} A_{ij} \|f(X_i) - f(X_j)\|^2$$

Another example is Neural Graph Machines [Bui et al, WSDM'18], which uses graph similarity as a regularization in a hidden (latent) layer

This is outside the scope of today's tutorial, but it's good to be aware of.

Outline

- 1. Semi-Supervised Learning w/ Graph Embeddings
 - a. Unsupervised Embeddings + Training Data
 - b. Graphs as Regularizers
 - c. Graph Convolutional Approaches
 - i. Overview
 - ii. GCNs
 - iii. Extensions
- 2. Supervision as Inspiration
 - a. The Graph as Supervision
 - b. Watch Your Step

Graph Convolutional Methods

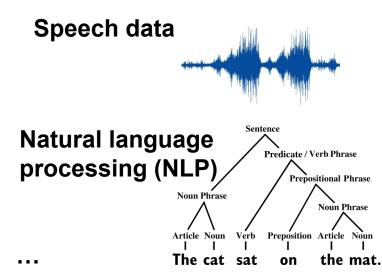
The Big Idea

- 1. Formulate a joint objective over the graph and the labels
- 2. Jointly learn representation and label predictions.

Methods here explicitly spread information over the graph while learning their representations.

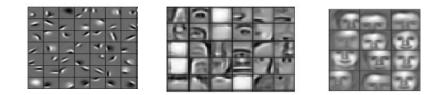
The success story of deep learning

IM AGENET

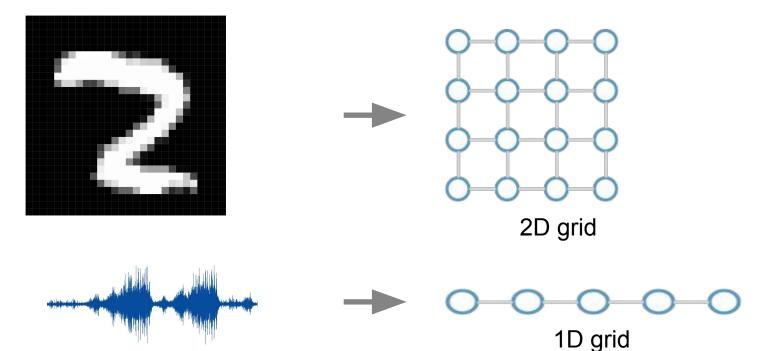


Deep neural nets that exploit:

- translation invariance (weight sharing)
- hierarchical compositionality

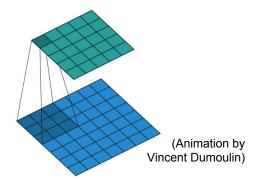


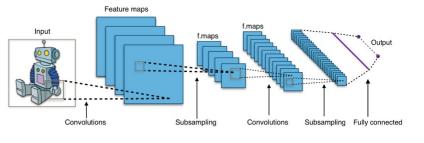
Recap: Deep learning on Euclidean data



Recap: Deep learning on Euclidean data

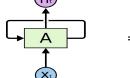
Convolutional neural networks (CNNs)

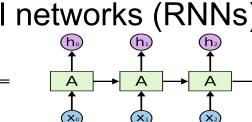




(Source: Wikipedia)

or recurrent neural networks (RNNs)



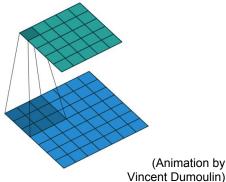


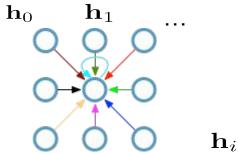
(Source: Christopher Olah's blog)

[original slide: Thomas Kipf, used w/ permission]

h

Convolutional neural networks (on grids) Single CNN layer with 3x3 filter:





Update for a single pixel:

- Transform neighbors individually $\mathbf{W}_i \mathbf{h}_i$
- Add everything up $\sum_i \mathbf{W}_i \mathbf{h}_i$

Full update: $\mathbf{h}_{4}^{(l+1)} = \sigma \left(\mathbf{W}_{0}^{(l)} \mathbf{h}_{0}^{(l)} + \mathbf{W}_{1}^{(l)} \mathbf{h}_{1}^{(l)} + \dots + \mathbf{W}_{8}^{(l)} \mathbf{h}_{8}^{(l)} \right)$

Graph Convolutional Networks

Spectral graph convolutions Main idea:

Use **convolution theorem** to generalize convolution to graphs. Loosely speaking:

A convolution corresponds to a multiplication in the Fourier domain.

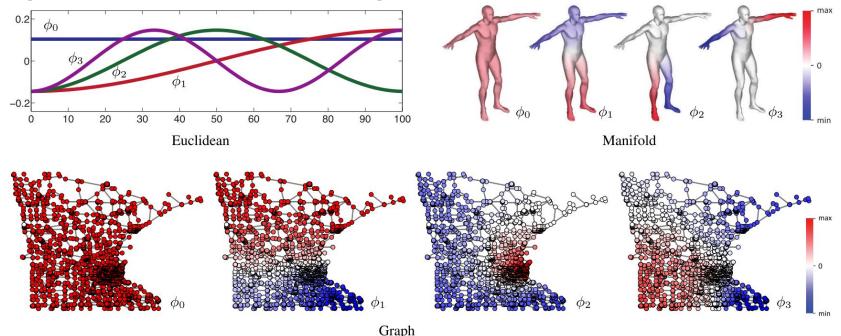
Graph Fourier transform: [Hammond, Vandergheynst, Gribonval, 2009]

 $\mathcal{F}[\mathbf{x}] = \mathbf{\Phi}^T \mathbf{x}$ $\mathbf{\Phi}$: eigenvectors of graph Laplacian \mathbf{L}

with $\mathbf{L} = \mathbf{I}_N - \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$ (normalized graph Laplacian)

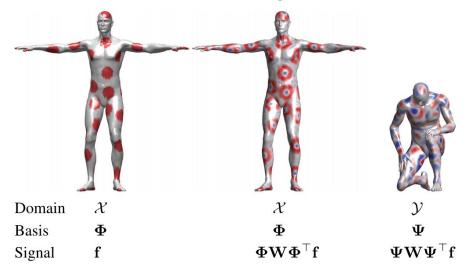
and $\mathbf{L} = \mathbf{\Phi} \mathbf{\Lambda} \mathbf{\Phi}^T$ (its eigen-decomposition) D: degree matrix $D_{ii} = \sum_j A_{ij}$

Eigenvectors of the graph Laplacian



[FIGS3] Example of the first four Laplacian eigenfunctions ϕ_0, \dots, ϕ_3 on a Euclidean domain (1D line, top left) and non-Euclidean domains ϕ_i : eigenvectors of graph Laplacian L [Figure: Bronstein et al., 2016]

CNNs with spectral graph convolutions

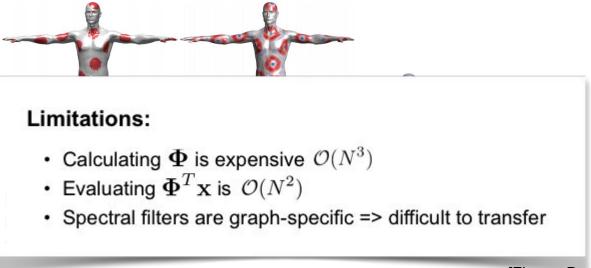


[Figure: Bronstein et al., 2016]

Recipe for CNN on graphs [Bruna et al., 2014]:

Stack multiple layers of spectral graph convolutions + non-linearities

CNNs with spectral graph convolutions



[Figure: Bronstein et al., 2016]

Recipe for CNN on graphs [Bruna et al., 2014]:

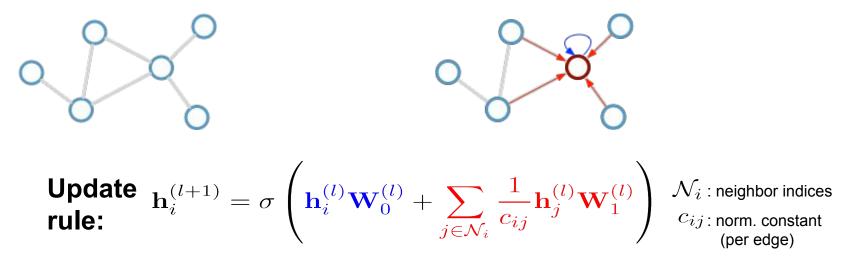
Stack multiple layers of spectral graph convolutions + non-linearities

(first proposed in [Scarselli et al. 2009])

CNNs on graphs with spatial filters

Consider this undirected graph:

Calculate update for node in red:



How is this related to spectral CNNs on graphs?

Localized 1st-order approximation of spectral filters [Kipf & Welling, ICLR 2017]

Vectorized form $\mathbf{H}^{(l+1)} = \sigma \left(\mathbf{H}^{(l)} \mathbf{W}_{0}^{(l)} + \tilde{\mathbf{A}} \mathbf{H}^{(l)} \mathbf{W}_{1}^{(l)} \right)$ with $\tilde{\mathbf{A}} = \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$

Or treat self-connection in the same way:

 $\mathbf{H}^{(l+1)} = \sigma\left(\hat{\mathbf{A}}\mathbf{H}^{(l)}\mathbf{W}_{1}^{(l)}\right)$

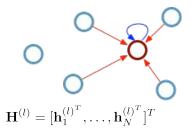
with $\hat{\mathbf{A}} = \tilde{\mathbf{D}}^{-\frac{1}{2}} (\mathbf{A} + \mathbf{I}_N) \tilde{\mathbf{D}}^{-\frac{1}{2}}$

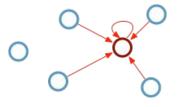
${\bf A}$ is typically ${\bf sparse}$

- We can use sparse matrix multiplications!
- ➡ Efficient $\mathcal{O}(|\mathcal{E}|)$ implementation in Theano or TensorFlow

[original slide: Thomas Kipf, used w/ permission]

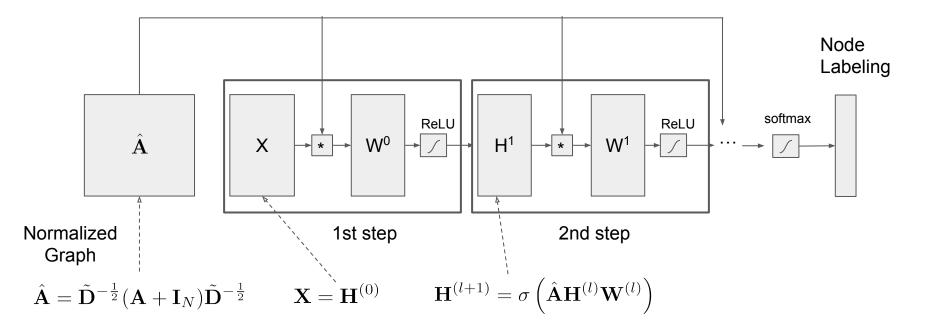
32





$$\tilde{D}_{ii} = \sum_{j} (A_{ij} + \delta_{ij})$$

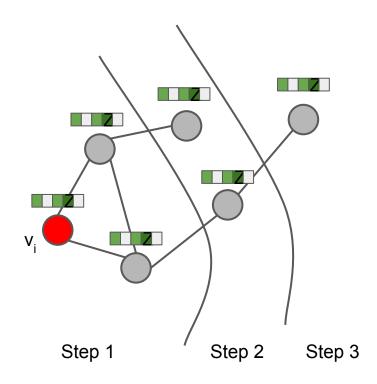
Block View of the GCN Model



[Kipf & Welling, ICLR 2017]

Graph View of GCN Model

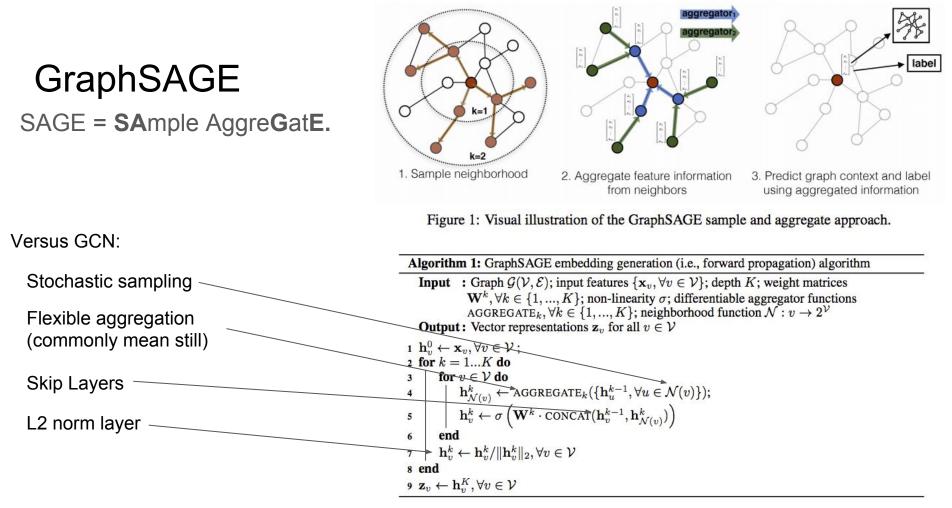
At every iteration, the model aggregates information from one hop deeper.



Potential Limitations of the GCN Model

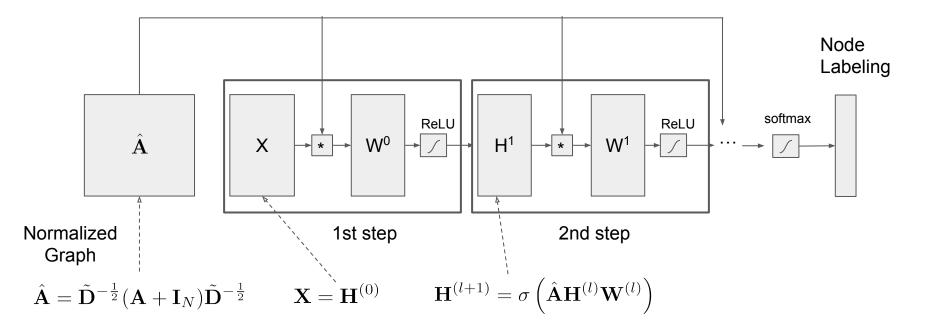
- 1. Fixed Aggregation Function
- 2. Scalability
- 3. Treats all Graph Edges equally
- 4. Effective Depth

GCN Extensions

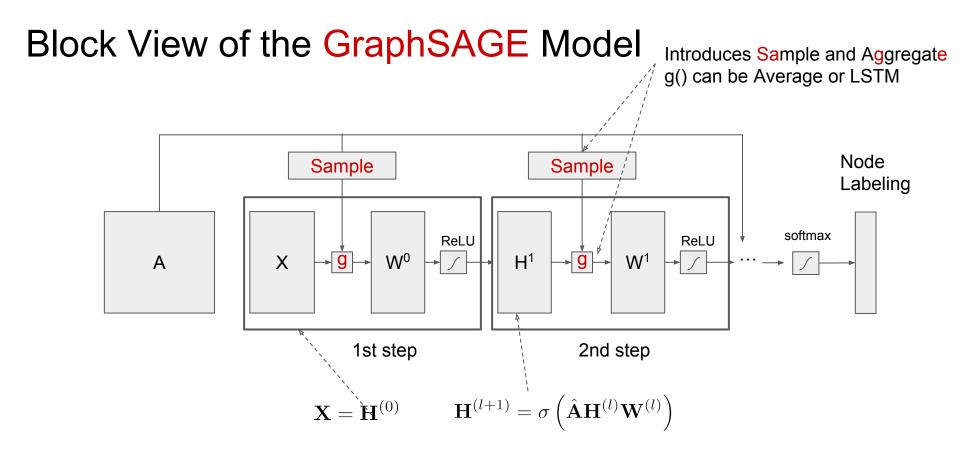


[Hamilton, et al., NIPS 2017]

Block View of the GCN Model



[Kipf & Welling, ICLR 2017]



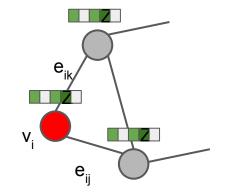
[Hamilton, et al., NIPS 2017]

Graph Attention Networks (GAT)

Problem: GCNs assume the importance of the edges in the graph are equal.

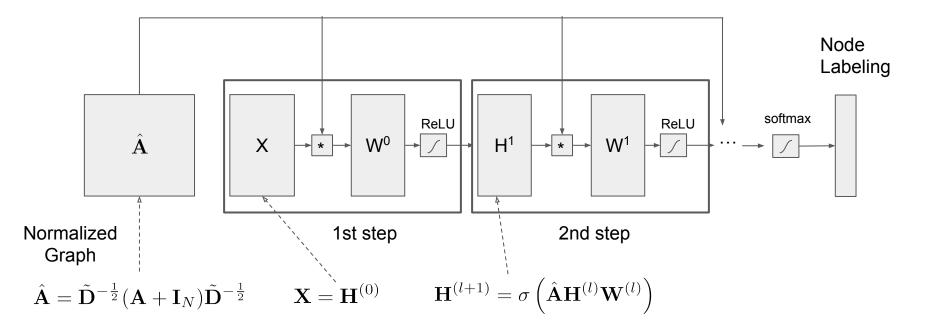
Idea: What if we add a learnable attention weight for each edge e_{ii}?

$$\begin{split} \alpha_{ij} &= \mathrm{softmax}_j(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_i} \exp(e_{ik})}.\\ \alpha_{ij} &= \frac{\exp\left(\mathrm{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\mathrm{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_k]\right)\right)} \end{split}$$



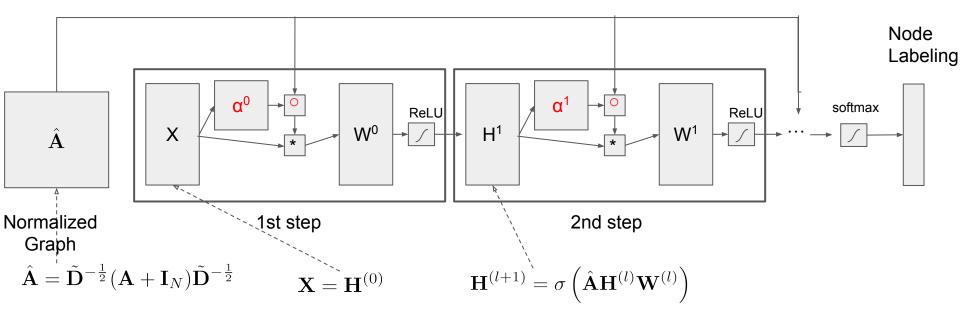
[Veličković, et al., ICLR 2018]

Block View of the GCN Model



[Kipf & Welling, ICLR 2017]

Block View of the GAT Model

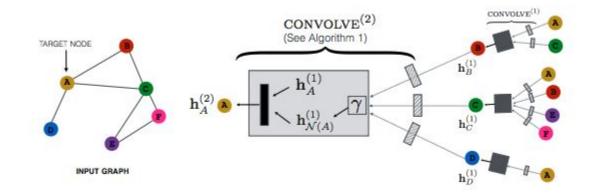


[Veličković, et al., ICLR 2018]

Scalable GCNs

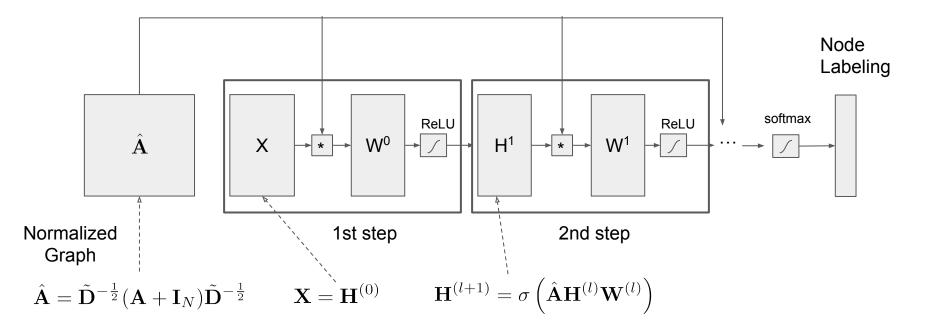
Problem: How to distribute a GCN over billion node graphs?

Idea: Sampling neighbors, local convolution, and M/R node embeddings.



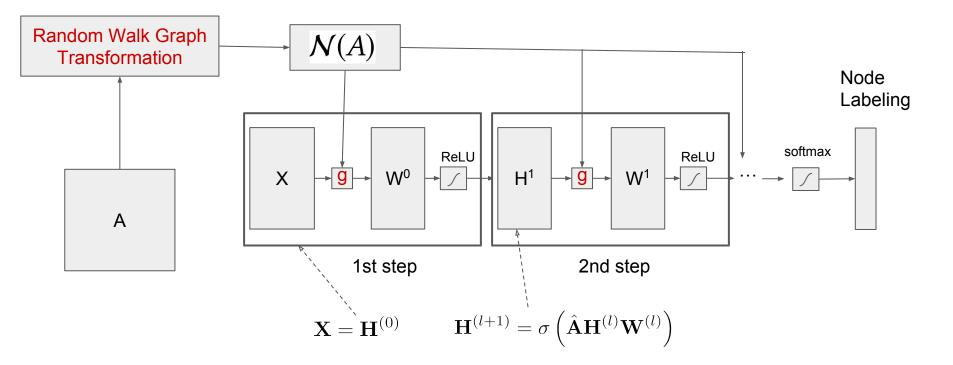
[Ying, et al., KDD 2018]

Block View of the GCN Model



[Kipf & Welling, ICLR 2017]

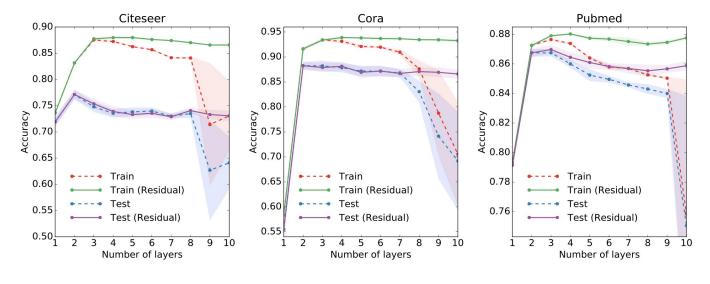
Block View of the Scalable GCN Model



After training, inference via MapReduce pipeline.

[Ying, et al., KDD 2018]

GCN: How deep is deep enough?



 $\operatorname{Residual \ connection}_{H^{(l+1)} = \sigma\left(\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}H^{(l)}W^{(l)}\right) + H^{(l)}}$

[original slide: Thomas Kipf, used w/ permission]

Graph Convolution VS Random Walks

$$\operatorname{GCN}_{2\operatorname{-layer}}(\hat{A}, X; \theta) = \operatorname{softmax}\left(\hat{A}\sigma(\hat{A}XW^{(0)})W^{(1)}\right)$$

Consider special case if σ is "identity" and W⁽⁰⁾ is identity matrix:

$$\operatorname{GCN}_{2-\operatorname{layer-special}}(\hat{A}, X) = \operatorname{softmax}\left(\hat{A}\hat{A}XW^{(1)}\right)$$

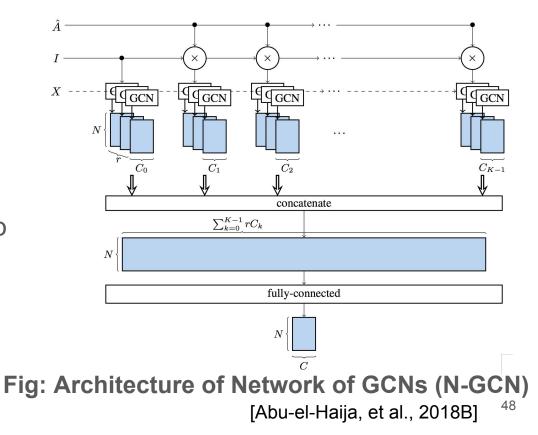
Becomes equivalent to 1-step random walk. In general:

$$\hat{A}^k = D^{-\frac{1}{2}} A \mathcal{T}^{k-1} D^{-\frac{1}{2}}$$

What if we explicitly feed-in Random Walk statistics into GCNs?

N-GCN: Multi-scale Graph Convolution for Semi-supervised Node Classification

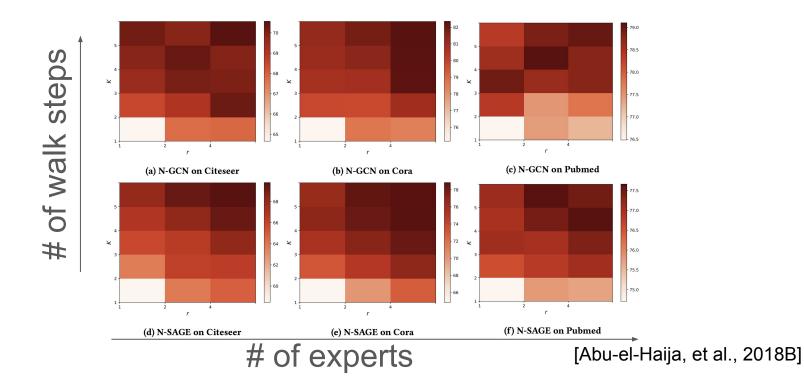
- Make many instantiations of GCN modules.
- Feed each some power of Adjacency matrix.
- Concatenate output of all GCN instantiations, feed into fully-connected layers, producing node labels.



	Method	Citeseer	Cora	Pubmed	PPI
(a)	ManiReg (Belkin et al., 2006b)	60.1	59.5	70.7	
(b)	SemiEmb (Weston et al., 2012)	59.6	59.0	71.1	-
(c)	LP (Zhu et al., 2003)	45.3	68.0	63.0	—
(d)	DeepWalk (Perozzi et al., 2014)	43.2	67.2	65.3	_
(e)	ICA (Lu & Getoor, 2003)	69.1	75.1	73.9	_
(f)	Planetoid (Yang et al., 2016)	64.7	75.7	77.2	<u> </u>
(g)	GCN (Kipf & Welling, 2017)	70.3	81.5	79.0	-
(h)	SAGE-LSTM (Hamilton et al., 2017)	_	_	_	61.2
(i)	SAGE (Hamilton et al., 2017)	—	—	—	60.0
(j)	DCNN (our implementation)	71.1	81.3	79.3	44.0
(k)	GCN (our implementation)	71.2	81.0	78.8	46.2
(1)	SAGE (our implementation)	63.5	77.4	77.6	59.8
(m)	N-GCN (ours)	72.2	83.0	79.5	46.8
(n)	N-SAGE (ours)	71.0	81.8	79.4	65.0

Sensitivity Analysis

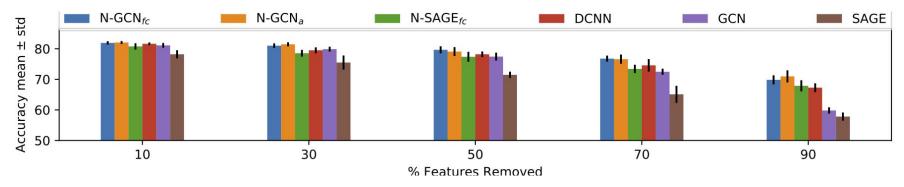
• Accuracy VS random walk steps (K) VS replication factor (r)



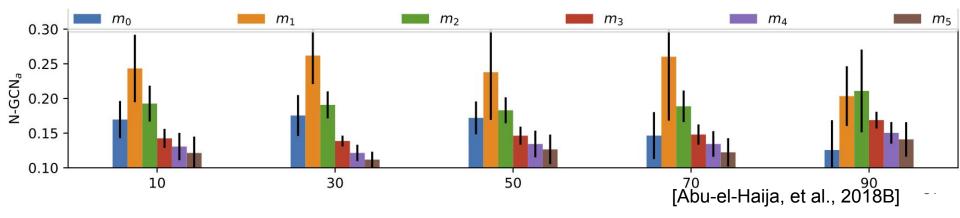
50

Experiment: Input Perturbations [c]

Removing features degrades performance of baselines more than NGCN



N-GCN assigns more weight to further nodes when features are removed



In this Section

- 1. Semi-Supervised Learning w/ Graph Embeddings
 - a. Unsupervised Embeddings + Training Data
 - b. Graphs as Regularizers
 - c. Graph Convolutional Approaches
 - i. Overview
 - ii. GCNs
 - iii. Extensions

2. Supervision as Inspiration

- a. The Graph as Supervision
- b. Watch Your Step

Looking Forward: Graphs as Supervision

Graph as Supervision: Loss Function

One can think of *the known edges* as *supervision*.

E.g., in Link Prediction, we assume that graph is *partially* observed, with goal of completing it: ranking missing (hidden) positive edges above negative ones.

It is possible to train unsupervised embeddings using an edge function $g(u, v) \in \{0, 1\}$, which outputs 1 if an edge exists and 0 otherwise.

One such example is the Graph Likelihood objective, which is a "supervised" loss function [Abu-el-Haija, et al., CIKM 2017].

Probabilistic Graph Likelihood: Derivation

- Assume $g: V \times V \rightarrow [0, 1]$ is an edge estimator.
- If g() is "accurate", then likelihood below will equal to 1 when evaluated on A:

$$\Pr(G) = \prod_{(u,v)\in A} g(u,v) \prod_{(u,v)\notin A} 1 - g(u,v)$$

[Abu-el-Haija, et al., CIKM 2017]⁵⁵

Probabilistic Graph Likelihood: Derivation

- Assume $g : V \times V \rightarrow [0, 1]$ is an edge estimator.
- If g() is "accurate", then likelihood below will equal to 1 when evaluated on A:

$$\Pr(G) = \prod_{(u,v) \in A} g(u,v) \prod_{(u,v) \notin A} 1 - g(u,v)$$

• Equation above can be written as:

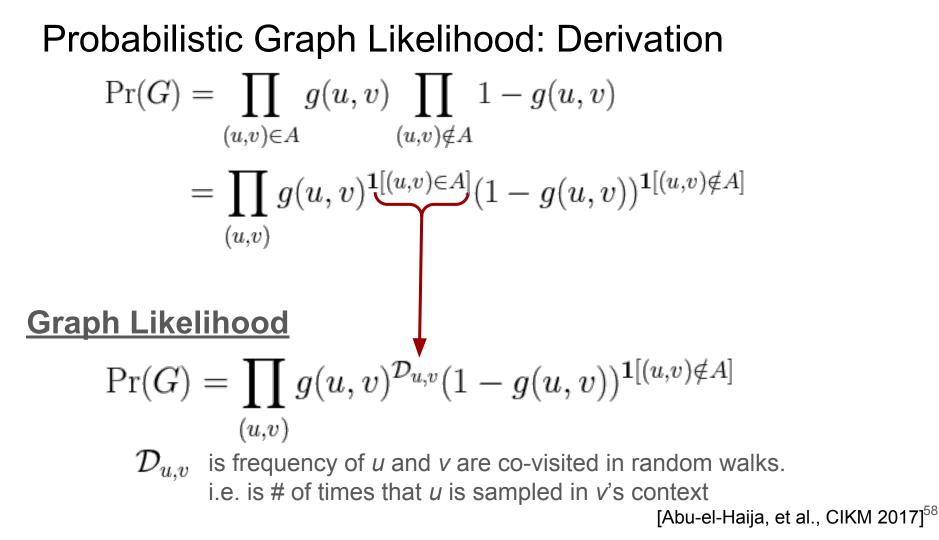
$$\Pr(G) = \prod_{(u,v)} g(u,v)^{\mathbf{1}[(u,v)\in A]} (1 - g(u,v))^{\mathbf{1}[(u,v)\notin A]}$$

[Abu-el-Haija, et al., CIKM 2017]⁵⁶

Probabilistic Graph Likelihood: Derivation

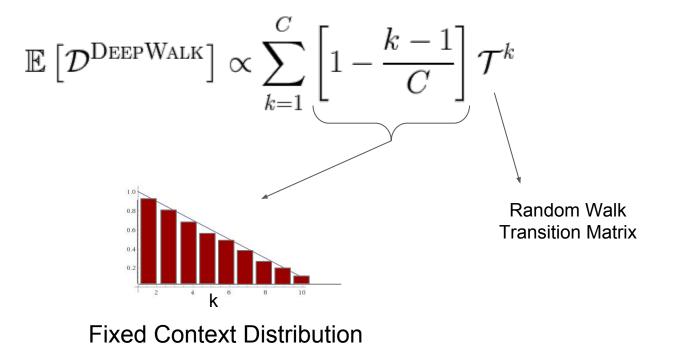
$$\Pr(G) = \prod_{(u,v)\in A} g(u,v) \prod_{(u,v)\notin A} 1 - g(u,v)$$

$$= \prod_{(u,v)} g(u,v)^{\mathbf{1}[(u,v)\in A]} (1 - g(u,v))^{\mathbf{1}[(u,v)\notin A]}$$



Context Distribution: Sampling Window

• What is $\mathcal{D}_{u,v}$ really ?



Context Distributions

Training with DeepWalk yields (in expectation) co-visit statistics matrix:

$$\mathbb{E}\left[\mathcal{D}^{\text{DEEPWALK}}\right] \propto \sum_{k=1}^{C} \left[1 - \frac{k-1}{C}\right] \mathcal{T}^{k}$$

Training with GloVe [Pennington, et al., EMNLP 2014] yields (in expectation) co-visit statistics matrix:

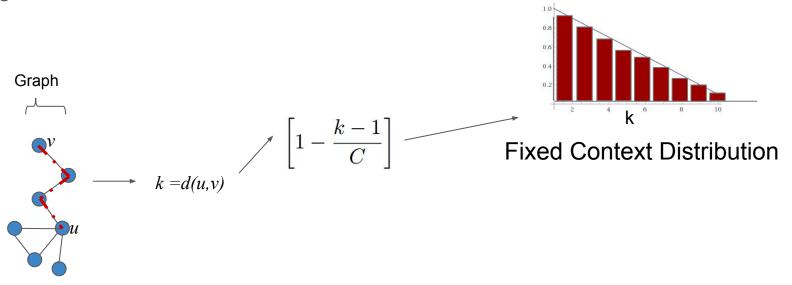
$$\mathbb{E}\left[\mathcal{D}^{\text{GloVe}}\right] \propto \sum_{k=1}^{C} \frac{1}{k} \mathcal{T}^{k}$$

Which one is better? What do we choose for the context distribution?

- Option 1: Hyper-parameter approach (change with each dataset)
- Option 2: Learn them from the graph!

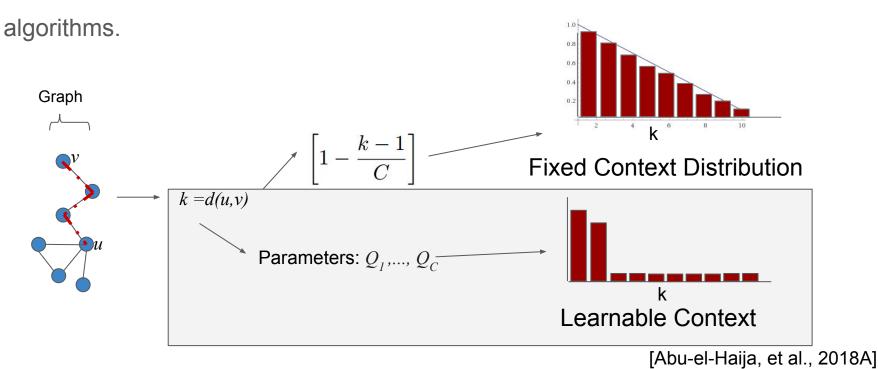
Context Distribution is a Hidden Hyper-parameter!

Problem: Distance in random walk (# hops) hardcoded as importance in many algorithms.



Watch Your Step: Learning Graph Embeddings Through Attention

Problem: Distance in random walk (# hops) hardcoded as importance in many



Learnable Context Distributions

Instead of hardcoding context distribution like previous work:

$$\mathbb{E}\left[\mathcal{D}^{\text{DeepWalk}}\right] \propto \sum_{k=1}^{C} \left[1 - \frac{k-1}{C}\right] \mathcal{T}^{k}$$

Let's parametrize the expectation with a real positive vector Q:

$$\mathbb{E}\left[\mathbf{D}; Q_1, Q_2, \dots Q_C\right] = \tilde{\mathbf{P}}^{(0)} \sum_{k=1}^{C} Q_k \left(\mathcal{T}\right)^k$$

1

Under constraints: $Q = (Q_1, Q_2, \dots, Q_W)$ with $Q_k \ge 0$

E.g. we can set: $(Q_1, Q_2, Q_3, ...) = \operatorname{softmax}((q_1, q_2, q_3, ...)),$

Learnable Context Distributions

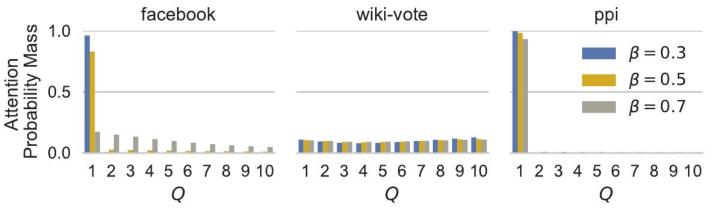
Objective function:

 $\min_{\mathbf{L},\mathbf{R},\mathbf{q}}\beta||\mathbf{q}||_{2}^{2}+\left|\left|-\mathbb{E}[\mathbf{D};\mathbf{q}]\circ\log\left(\sigma(\mathbf{L}\times\mathbf{R}^{T})\right)-\mathbb{1}[\mathbf{A}=0]\circ\log\left(1-\sigma(\mathbf{L}\times\mathbf{R}^{T})\right)\right|\right|_{1}$

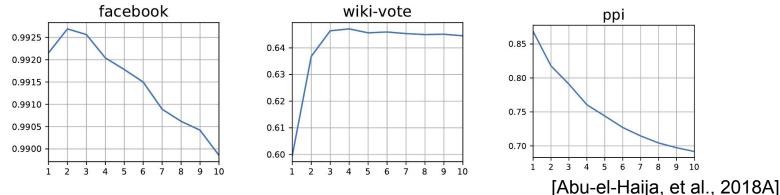
Where the attention parameters in vector $\mathbf{q} = (q_1 q_2 ...)$ is only used for training -- not inference (its not part of the node embeddings L, R).

Context Distributions: What does Q learn?

• Different distribution for every graph



• Distributions agree with optimal, if we sweep *window_size* with node2vec.



Learning Context Distribution: Link Prediction Results

Datasat	dim	D by Simulation			Attention Walks (ours)		
Dataset		node2vec	node2vec	Asym	λ -decay (13)	softmax (11)	
		W = 2	W = 5	Proj	<i>n</i> accay (15)	Solumax (11)	
wiki-vote	64	64.4	63.6	91.7	93.5 ± 0.62	93.8 ± 0.13	
wiki-vote	128	63.7	64.6	91.7	92.9 ± 0.73	93.8 ± 0.05	
ego-Facebook	64	99.1	99.0	97.4	99.3 ± 0.02	99.4 ± 0.10	
ego-racebook	128	99.3	99.2	97.3	99.3 ± 0.03	99.5 ± 0.03	
ca-AstroPh	64	97.4	96.9	95.7	98.6 ± 0.03	97.9 ± 0.21	
ca-Astror II	128	97.7	97.5	95.7	98.6 ± 0.03	98.1 ± 0.49	
ca-HepTh	64	90.6	91.8	90.3	91.4 ± 0.17	93.6 ± 0.06	
ca-mepin	128	90.1	92.0	90.3	92.2 ± 0.18	93.9 ± 0.05	
PPI	64	79.7	70.6	82.4	90.0 ± 0.03	89.8 ± 1.05	
	128	81.8	74.4	83.9	90.4 ± 0.06	91.0 ± 0.28	

Takeaways

- 1. Supervision can create embeddings that are good for a downstream task (e.g. node labeling)
- 2. Very active field of research
- 3. Supervision can provide cool inspiration for better unsupervised methods

References

[Abu-el-Haija, et al., CIKM 2017] [Abu-el-Haija, et al., 2018A] [Abu-el-Haija, et al., 2018B] [Bronstein et al., 2016] [Bruna et al., 2014] [Bui et al, WSDM'18] [Hamilton, et al., NIPS 2017] [Hammond, et al., 2009] [Kipf & Welling, ICLR 2017] [Pennington, et al., EMNLP 2014] [Perozzi, et al., KDD 2014] [Scarselli et al. 2009] [Veličković, et al., ICLR 2018] [Yang, et al. ICML'16] [Ying, et al., KDD 2018] [Zhu, et al., ICML 2003]

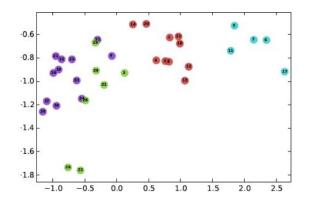
Whole Graph Representation Learning

Modeling Data With Networks + Network Embedding: Problems, Methodologies and Frontiers

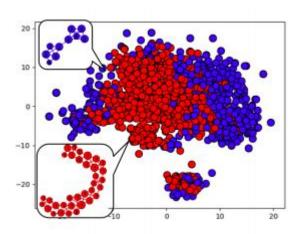
Ivan Brugere (University of Illinois at Chicago) Peng Cui (Tsinghua University) Bryan Perozzi (Google) Wenwu Zhu (Tsinghua University) Tanya Berger-Wolf (University of Illinois at Chicago) Jian Pei (Simon Fraser University) Bryan Perozzi bperozzi@acm.org

What does it mean to represent a whole graph?

Moving from a representation over nodes to an embedding for an entire graph.



Node Representation (DeepWalk)



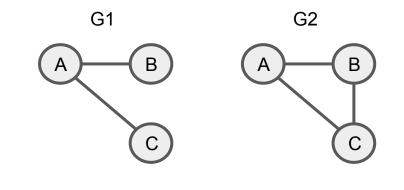
Graph Representation [Taheri, Gimpel, Berger-Wolf -KDD'18]

Traditional Method 1: Graph Matching

Many similarity methods defined over graphs, e.g.

Graph Edit Distance:

How many {node,edge} {insertions,deletions} are needed to transform one graph into another?



Edit distance (G1,G2) = 1

[A. Sanfeliu; K-S. Fu (1983)]

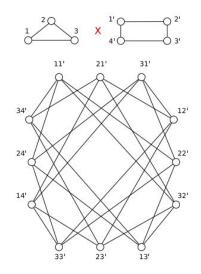
Traditional Method 2: Graph Kernels

Idea: Define a kernel between graphs that captures their similarity.

Example: Random Walk Graph Kernel: Given a pair of graphs, perform random walks on both (at once), and count the number of matching walks.

Pros: Elegant mathematical formalism

Cons: Scalability (even efficient methods O(N^3))



direct product graph

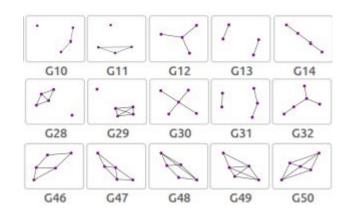
Deep Graph Kernel

Idea:

Decompose graph into list of discrete substructures. Learn similarity between substructures using Skipgram.

Structure considered:

- 1. Graphlets (i.e. Motifs)
- 2. Shortest Paths
- 3. Weisfeiler-Lehman Kernels



Learned substructure similarity matrix $\mathcal{K}(\mathcal{G}, \mathcal{G}') = \phi(\mathcal{G})^T \mathcal{M}\phi(\mathcal{G}')$ $\overbrace{\phi(\mathcal{G})}^{\mathcal{K}}$ Counts of graph substructures

[P. Yanardag and S. Vishwanathan, KDD'15]

PATCHY-SAN

Idea: Linearize local graph structure, so traditional convolution can be applied.

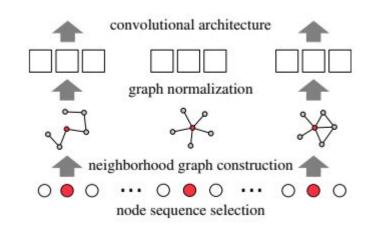
Convolutional architecture to predict graph's label (e.g. just like an image's label).

Pros:

Leverage architecture from image classification

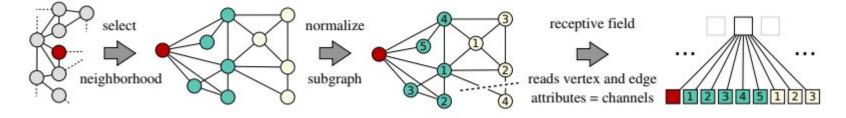
Cons:

Requires external graph linearization routine



[Niepert et al, ICML 2016]

PATCHY-SAN: Algorithm Overview

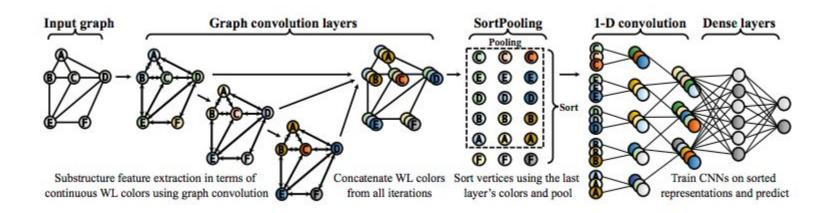


- 1. Order nodes
- 2. Select Neighborhood
- 3. Linearize Neighborhood
 - a. 1-dimensional Weisfeiler-Lehman routine (heuristic)
- 4. Apply standard convolutional architecture

[Niepert et al, ICML 2016]

DGCNN

Combine information from the Weisfeiler-Lehman kernel, with a pooling layer inspired by PATCHY-SAN.



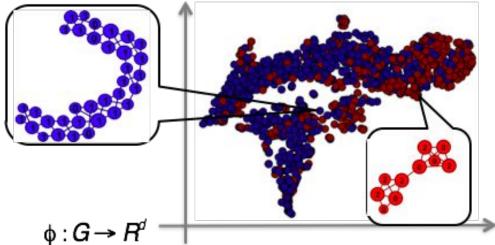
[Zhang et al., AAAI'18]

Sequence Modeling for Graphs

Use an LSTM to encode observed similarity pairs from a graph.

- 1. Random Walks
- 2. Shortest Paths
- 3. Breadth First Search

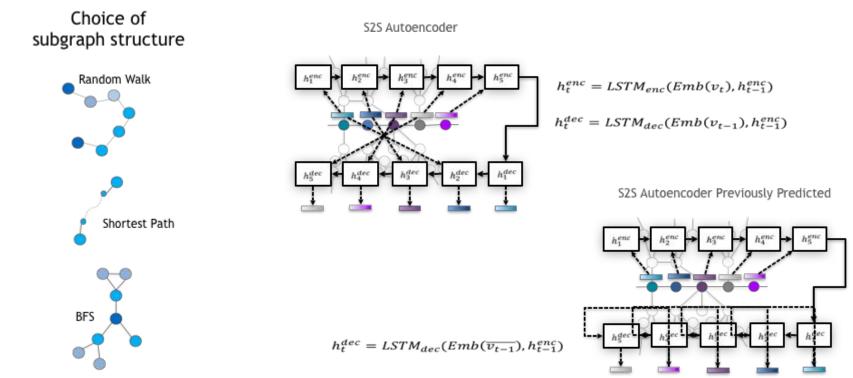
The latent space of these models is a graph representation.



Learned graph representations in Proteins [Borgwardt 2005] dataset, which has two classes: enzyme (red) and non-enzyme (blue).

[Taheri, Gimpel, Berger-Wolf, KDD'18]

LSTM Sequence Encoding



[Original Slide, Aynaz Taheri, used with permission]

References

[A. Sanfeliu; K-S. Fu (1983)] [Niepert et al, ICML 2016] [P. Yanardag and S. Vishwanathan, KDD'15] [Taheri, Gimpel, Berger-Wolf, KDD'18] [Vishwanathan et al, 2010] [Zhang et al, AAAI'18]