
Semi-supervised Methods
for Graph Representation

Bryan Perozzi
bperozzi@acm.org

Modeling Data With Networks + Network Embedding:
Problems, Methodologies and Frontiers

Ivan Brugere (University of Illinois at Chicago)
Peng Cui (Tsinghua University)
Bryan Perozzi (Google)
Wenwu Zhu (Tsinghua University)
Tanya Berger-Wolf (University of Illinois at Chicago)
Jian Pei (Simon Fraser University)

mailto:bperozzi@acm.org
https://ivanbrugere.github.io/kdd2018/
https://ivanbrugere.github.io/kdd2018/

Why Supervision?

Supervision allows us to tailor the network representation to
the task we actually care about!

E.g: Are you going to use the representations for labeling?

=> Include training labels

Power of Supervision

Graph Layout Unsupervised
Representation

(DeepWalk)

Supervised
Representation

(GCN)
[Kipf & Welling’17, used with permission]

Graph: Zachary’s Karate Club
Labels: Community Ids

4

Original
GNN

Gori et al.
(2005)

GG-NN
Li et al.

(ICLR 2016)

(slide inspired by Thomas Kipf’s talk on GNNs)

GraphSAGE
Hamilton et

al.(NIPS 2017)

MoNet
Monti et al.

(CVPR
2017)Neural MP
Gilmer et al.
(ICML 2017)

Relation Nets
Santoro et al.(NIPS

2017)

“DL on graph explosion”

Programs as Graphs
Allamanis et al.

(ICLR 2018)
NRI

Kipf et al.
(ICML 2018)GAT

Veličković et al.
(ICLR 2018)

…

A brief history of Graphs and Neural Networks

“Spectral methods”

“Graph Embedding methods”

DeepWalk
Perozzi et al.
(KDD 2014)

Planetoid
Yang et al.

(ICML 2016)

Spectral
Graph CNN
Bruna et al.
(ICLR 2015)

ChebNet
Defferrard et

al. (NIPS
2016)

GCN
Kipf & Welling
(ICLR 2017)

SocDim
Tang et al.

(KDD 2009)

node2vec
 Grover et al.
(KDD 2016)

HARP
 Chen et al.
(AAAI 2018)

SDNE
 Wang et al.
(KDD 2016)

HOPE
 Ou et al.

(KDD 2016)

DRNE
 Tu et al.

(KDD 2018)

“Graph Neural Networks”

In this Section
1. Semi-Supervised Learning w/ Graph Embeddings

a. Unsupervised Embeddings + Training Data
b. Graphs as Regularizers
c. Graph Convolutional Approaches

i. Overview
ii. GCNs
iii. Extensions

2. Supervision as Inspiration
a. The Graph as Supervision
b. Watch Your Step

Semi-supervised Learning on Graphs

Problem Definition:

● INPUT:
○ Adjacency Matrix, A
○ Features, X
○ Partially Labeled Nodes

● OUTPUT:
○ Labels for all Nodes, Y

Semi-supervised Graph Representation Learning

Standard SSL Definition:

● INPUT:
○ Adjacency Matrix, A
○ Features, X
○ Partially Labeled Nodes

● OUTPUT:
○ Labels for all Nodes, Y

Methods We’ll Focus On:

● INPUT:
○ Adjacency Matrix, A
○ Features, X
○ Partially Labeled Nodes

● OUTPUT:
○ Representations Φ for each Node

■ Correlated with the labels
○ Labels for all Nodes, Y

Adding Supervision to
 Unsupervised Embeddings

The Straightforward Approach
Given: We already know how to create good
embeddings for a graph.

Idea: Why not “put a DNN on it”?

1. Embed A → Φ
2. Pass through 0 or more hidden layers
3. Add Output Layer

The internal layers of this DNN are
semi-supervised graph representations.

Φi

H1

Node
embedding

Hidden
Layer(s)

Output Layer

Hk

Challenges with “Put a DNN on it”
Problem 1: Maybe something went wrong with the
embedding process (bad initialization,
hyper-parameters, etc).

We’ve already thrown out the graph!

Φi

H1

Node
embedding

Hidden
Layer(s)

Output Layer

Hk

Potential Problem: Generalization
Problem 2: How can we loosen the assumption
on Φ’s quality.

One way to do this is might be to fine-tune each
node’s Φi as we train.
(Doesn’t generalize well, and can easily overfit - testing data
never receive Φi updates.) Φi

H1

Node
embedding

Hidden
Layer(s)

Output Layer

Hk

Joint Loss Models
Idea: NN are flexible, can we combine?

1. Require the embeddings stay good
a. (Similar to a reconstruction loss)

2. Share representations between loss
terms

Φi

H1

Hk
Φi()Φj,

Loss = Lsupervised + Lunsupervised

Planetoid-T Model
Application of what we’ve
discussed so far.

1. Features and Node
Embeddings combined for a
supervised loss.

2. Unsupervised loss keeps the
embeddings good Φi

H1
Φi()Φj,

Loss = Lsupervised + Lunsupervised

Xi

Hx

[Yang, et al., ICML 2016]

Challenges with Joint Loss Models
Problem 1: How to balance the two
terms of the loss?

Φi

H1

Hk
Φi()Φj,

Loss = Lsupervised + Lunsupervised

Challenges with Joint Loss Models
Problem 1: How to balance the two
terms of the loss?

Problem 2: Model only has single global
hyper-parameter to control combination
for all nodes.

Φi

H1

Hk
Φi()Φj,

Loss = Lsupervised + Lunsupervised

Challenges with Joint Loss Models
Problem 1: How to balance the two
terms of the loss?

Problem 2: Model only has single global
hyper-parameter to control combination
for all nodes.

Problem 3: We’re still throwing away the
graph...

Φi

H1

Hk
Φi()Φj,

Loss = Lsupervised + Lunsupervised

Graphs as a Regularizer (aside)

Graph Regularization for Label Assignment
Significant body of work on adding a graph regularization to an existing model.

E.g. [Zhu, et al, 2003] combine a classifier loss L0 with a graph-regularizer loss
Lreg that encourages similar output for connected nodes

Another example is Neural Graph Machines [Bui et al, WSDM’18], which uses
graph similarity as a regularization in a hidden (latent) layer

This is outside the scope of today’s tutorial, but it's good to be aware of.

Outline
1. Semi-Supervised Learning w/ Graph Embeddings

a. Unsupervised Embeddings + Training Data
b. Graphs as Regularizers
c. Graph Convolutional Approaches

i. Overview
ii. GCNs
iii. Extensions

2. Supervision as Inspiration
a. The Graph as Supervision
b. Watch Your Step

Graph Convolutional Methods

The Big Idea

1. Formulate a joint objective over the graph and the labels
2. Jointly learn representation and label predictions.

Methods here explicitly spread information over the graph
while learning their representations.

22

Speech data

Natural language
processing (NLP)

…

Deep neural nets that exploit:
- translation invariance (weight sharing)
- hierarchical compositionality

The success story of deep learning

[original slide: Thomas Kipf, used w/ permission]

23

2D grid

1D grid

Recap: Deep learning on Euclidean data

[original slide: Thomas Kipf, used w/ permission]

24

Convolutional neural networks (CNNs)

(Animation by
Vincent Dumoulin) (Source: Wikipedia)

or recurrent neural networks (RNNs)

(Source: Christopher Olah’s blog)

Recap: Deep learning on Euclidean data

[original slide: Thomas Kipf, used w/ permission]

25

(Animation by
Vincent Dumoulin)

Single CNN layer with 3x3 filter:
…

Update for a single pixel:

● Transform neighbors individually
● Add everything up

Full update:

Convolutional neural networks (on grids)

[original slide: Thomas Kipf, used w/ permission]

Graph Convolutional Networks

27

Use convolution theorem to generalize convolution to graphs.

Main idea:

A convolution corresponds to a multiplication in the Fourier domain.
Loosely speaking:

Spectral graph convolutions

[original slide: Thomas Kipf, used w/ permission]

28

[Figure: Bronstein et al., 2016]: eigenvectors of graph Laplacian

Eigenvectors of the graph Laplacian

[original slide: Thomas Kipf, used w/ permission]

29

[Figure: Bronstein et al., 2016]

Recipe for CNN on graphs [Bruna et al., 2014]:
Stack multiple layers of spectral graph convolutions + non-linearities

CNNs with spectral graph convolutions

[original slide: Thomas Kipf, used w/ permission]

30

[Figure: Bronstein et al., 2016]

Recipe for CNN on graphs [Bruna et al., 2014]:
Stack multiple layers of spectral graph convolutions + non-linearities

CNNs with spectral graph convolutions

[original slide: Thomas Kipf, used w/ permission]

31

Consider this undirected graph: Calculate update for node in red:

 How is this related to spectral CNNs on graphs?
➡ Localized 1st-order approximation of spectral filters [Kipf & Welling, ICLR 2017]

Update
rule:

: neighbor indices

: norm. constant
 (per edge)

(first proposed in [Scarselli et al. 2009])

CNNs on graphs with spatial filters

[original slide: Thomas Kipf, used w/ permission]

32

with

Or treat self-connection in the same way:

with

Vectorized form

[original slide: Thomas Kipf, used w/ permission]

Block View of the GCN Model

[Kipf & Welling, ICLR 2017]

X W0

Node
Labeling

1st step 2nd step

softmaxReLU
…

Normalized
Graph

* H1 W1
ReLU

*
…

Graph View of GCN Model

At every iteration, the model
aggregates information from
one hop deeper.

vi

Z

Z

Z

Z

Z

Z

Step 1 Step 2 Step 3

Potential Limitations of the GCN Model

1. Fixed Aggregation Function
2. Scalability
3. Treats all Graph Edges equally
4. Effective Depth

GCN Extensions

GraphSAGE
SAGE = SAmple AggreGatE.

Versus GCN:

Stochastic sampling

Skip Layers

L2 norm layer

Flexible aggregation
(commonly mean still)

[Hamilton, et al., NIPS 2017]

Block View of the GCN Model

[Kipf & Welling, ICLR 2017]

X W0

Node
Labeling

1st step 2nd step

softmaxReLU
…

Normalized
Graph

* H1 W1
ReLU

*
…

Block View of the GraphSAGE Model

[Hamilton, et al., NIPS 2017]

A X W0

Node
Labeling

1st step 2nd step

softmaxReLU
…g H1 W1

ReLU
… g

Sample Sample

Introduces Sample and Aggregate
g() can be Average or LSTM

Graph Attention Networks (GAT)

Problem: GCNs assume the
importance of the edges in the graph
are equal.

Idea: What if we add a learnable
attention weight for each edge eij?

[Veličković, et al., ICLR 2018]

vi

Z

Z

Z

eij

eik

Block View of the GCN Model

[Kipf & Welling, ICLR 2017]

X W0

Node
Labeling

1st step 2nd step

softmaxReLU
…

Normalized
Graph

* H1 W1
ReLU

*
…

Block View of the GAT Model

X W0

Node
Labeling

1st step 2nd step

softmaxReLU

Normalized
Graph

…
α0

*

○

H1 W1
ReLUα1

*

○

[Veličković, et al., ICLR 2018]

Scalable GCNs

Problem: How to distribute a GCN over billion node graphs?

Idea: Sampling neighbors, local convolution, and M/R node
embeddings.

[Ying, et al., KDD 2018]

Block View of the GCN Model

[Kipf & Welling, ICLR 2017]

X W0

Node
Labeling

1st step 2nd step

softmaxReLU
…

Normalized
Graph

* H1 W1
ReLU

*
…

Block View of the Scalable GCN Model

A

X W0

Node
Labeling

1st step 2nd step

softmaxReLU
…H1 W1

ReLU
… g

Random Walk Graph
Transformation

g

[Ying, et al., KDD 2018]
After training, inference via MapReduce pipeline.

46

Residual connection

GCN: How deep is deep enough?

[original slide: Thomas Kipf, used w/ permission]

Graph Convolution VS Random Walks

Consider special case if σ is “identity” and W(0) is identity matrix:

47

What if we explicitly feed-in Random Walk statistics into GCNs?

Becomes equivalent to 1-step random walk. In general:

[Abu-el-Haija, et al., 2018B]

N-GCN: Multi-scale Graph Convolution for
Semi-supervised Node Classification
● Make many instantiations of

GCN modules.
● Feed each some power of

Adjacency matrix.
● Concatenate output of all

GCN instantiations, feed into
fully-connected layers,
producing node labels.

48
Fig: Architecture of Network of GCNs (N-GCN)

[Abu-el-Haija, et al., 2018B]

Graph Convolution on Random Walks:
Semi-supervised node classification results

49[Abu-el-Haija, et al., 2018B]

● Accuracy VS random walk steps (K) VS replication factor (r)
Sensitivity Analysis

50

of

 w
al

k
st

ep
s

of experts [Abu-el-Haija, et al., 2018B]

Experiment: Input Perturbations [c]

Maliciously removing features from X causes models performance to drop.
Random walk methods do better and performance gap widens with more
removal

51

Removing features degrades performance of baselines more than NGCN

N-GCN assigns more weight to further nodes when features are removed

[Abu-el-Haija, et al., 2018B]

In this Section
1. Semi-Supervised Learning w/ Graph Embeddings

a. Unsupervised Embeddings + Training Data
b. Graphs as Regularizers
c. Graph Convolutional Approaches

i. Overview
ii. GCNs
iii. Extensions

2. Supervision as Inspiration
a. The Graph as Supervision
b. Watch Your Step

Looking Forward: Graphs as Supervision

Graph as Supervision: Loss Function

One can think of the known edges as supervision.

E.g., in Link Prediction, we assume that graph is partially observed, with
goal of completing it: ranking missing (hidden) positive edges above
negative ones.

It is possible to train unsupervised embeddings using an edge function
g(u, v) ∈ {0, 1}, which outputs 1 if an edge exists and 0 otherwise.

One such example is the Graph Likelihood objective, which is a
“supervised” loss function [Abu-el-Haija, et al., CIKM 2017].

Probabilistic Graph Likelihood: Derivation
● Assume g : V x V → [0, 1] is an edge estimator.
● If g() is “accurate”, then likelihood below will equal to 1

when evaluated on A:

55[Abu-el-Haija, et al., CIKM 2017]

Probabilistic Graph Likelihood: Derivation
● Assume g : V x V → [0, 1] is an edge estimator.
● If g() is “accurate”, then likelihood below will equal to 1

when evaluated on A:

● Equation above can be written as:

56[Abu-el-Haija, et al., CIKM 2017]

Probabilistic Graph Likelihood: Derivation

Probabilistic Graph Likelihood: Derivation

58

Graph Likelihood

is frequency of u and v are co-visited in random walks.
i.e. is # of times that u is sampled in v’s context

[Abu-el-Haija, et al., CIKM 2017]

Context Distribution: Sampling Window

● What is really ?

59
Fixed Context Distribution

k

Random Walk
Transition Matrix

Context Distributions
Training with DeepWalk yields (in expectation) co-visit statistics matrix:

60

Training with GloVe [Pennington, et al., EMNLP 2014] yields (in expectation)
co-visit statistics matrix:

Which one is better? What do we choose for the context distribution?
● Option 1: Hyper-parameter approach (change with each dataset)
● Option 2: Learn them from the graph!

Context Distribution is a Hidden Hyper-parameter!

v

u

Graph

k =d(u,v)
Fixed Context Distribution

k

Problem: Distance in random walk (# hops) hardcoded as importance in many

algorithms.

Watch Your Step: Learning Graph Embeddings
Through Attention

v

u

Graph

k =d(u,v)
Fixed Context Distribution

Learnable Context

Parameters: Q1 ,..., QC

k

k

Problem: Distance in random walk (# hops) hardcoded as importance in many

algorithms.

[Abu-el-Haija, et al., 2018A]

Learnable Context Distributions

Let’s parametrize the expectation with a real positive vector Q:

63

E.g. we can set:

Under constraints:

Instead of hardcoding context distribution like previous work:

[Abu-el-Haija, et al., 2018A]

Learnable Context Distributions

64

Objective function:

Where the attention parameters in vector q=(q1 q2 …) is only
used for training -- not inference (its not part of the node
embeddings L, R).

[Abu-el-Haija, et al., 2018A]

Context Distributions: What does Q learn?
● Different distribution for every graph

65

● Distributions agree with optimal, if we sweep window_size with node2vec.

[Abu-el-Haija, et al., 2018A]

Learning Context Distribution: Link Prediction Results

66[Abu-el-Haija, et al., 2018A]

Takeaways

1. Supervision can create embeddings that are good for a
downstream task (e.g. node labeling)

2. Very active field of research
3. Supervision can provide cool inspiration for better

unsupervised methods

References
[Abu-el-Haija, et al., CIKM 2017]
[Abu-el-Haija, et al., 2018A]
[Abu-el-Haija, et al., 2018B]
[Bronstein et al., 2016]
[Bruna et al., 2014]
[Bui et al, WSDM’18]
[Hamilton, et al., NIPS 2017]
[Hammond, et al., 2009]
[Kipf & Welling, ICLR 2017]
[Pennington, et al., EMNLP 2014]
[Perozzi, et al., KDD 2014]
[Scarselli et al. 2009]
[Veličković, et al., ICLR 2018]
[Yang, et al. ICML’16]
[Ying, et al., KDD 2018]
[Zhu, et al., ICML 2003]

https://arxiv.org/abs/1705.05615
https://arxiv.org/abs/1710.09599
https://arxiv.org/pdf/1802.08888.pdf
https://arxiv.org/abs/1611.08097
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1703.04818
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/0912.3848
https://openreview.net/pdf?id=SJU4ayYgl
https://www.aclweb.org/anthology/D14-1162
https://arxiv.org/pdf/1403.6652.pdf
https://ieeexplore.ieee.org/document/4700287/
https://arxiv.org/abs/1710.10903
https://arxiv.org/pdf/1603.08861.pdf
https://arxiv.org/abs/1806.01973
http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf

Whole Graph
Representation Learning

Bryan Perozzi
bperozzi@acm.org

Modeling Data With Networks + Network Embedding:
Problems, Methodologies and Frontiers

Ivan Brugere (University of Illinois at Chicago)
Peng Cui (Tsinghua University)
Bryan Perozzi (Google)
Wenwu Zhu (Tsinghua University)
Tanya Berger-Wolf (University of Illinois at Chicago)
Jian Pei (Simon Fraser University)

mailto:bperozzi@acm.org
https://ivanbrugere.github.io/kdd2018/
https://ivanbrugere.github.io/kdd2018/

What does it mean to represent a whole graph?
Moving from a representation over nodes to an embedding for an entire graph.

Node Representation
(DeepWalk)

Graph Representation
[Taheri, Gimpel, Berger-Wolf -

KDD’18]

Traditional Method 1: Graph Matching
Many similarity methods defined over
graphs, e.g.

Graph Edit Distance:

How many {node,edge}
{insertions,deletions} are needed to
transform one graph into another?

A B

C

A B

C

G1 G2

Edit distance (G1,G2) = 1

[A. Sanfeliu; K-S. Fu (1983)]

Traditional Method 2: Graph Kernels
Idea: Define a kernel between graphs that
captures their similarity.

Example: Random Walk Graph Kernel:
Given a pair of graphs, perform random walks on
both (at once), and count the number of matching
walks.

Pros: Elegant mathematical formalism

Cons: Scalability (even efficient methods O(N^3))

[Vishwanathan et al, 2010]

direct product graph

Deep Graph Kernel
Idea:

Decompose graph into list of discrete
substructures. Learn similarity between
substructures using Skipgram.

Structure considered:

1. Graphlets (i.e. Motifs)
2. Shortest Paths
3. Weisfeiler-Lehman Kernels

[P. Yanardag and S. Vishwanathan, KDD’15]

Counts of graph substructures

Learned substructure
similarity matrix

PATCHY-SAN
Idea: Linearize local graph structure, so
traditional convolution can be applied.

Convolutional architecture to predict graph’s
label (e.g. just like an image’s label).

Pros:
Leverage architecture from image classification

Cons:
Requires external graph linearization routine

 [Niepert et al, ICML 2016]

PATCHY-SAN: Algorithm Overview

1. Order nodes
2. Select Neighborhood
3. Linearize Neighborhood

a. 1-dimensional Weisfeiler-Lehman routine
(heuristic)

4. Apply standard convolutional architecture
 [Niepert et al, ICML 2016]

DGCNN
Combine information from the Weisfeiler-Lehman kernel, with a pooling
layer inspired by PATCHY-SAN.

[Zhang et al., AAAI’18]

Sequence Modeling for Graphs
Use an LSTM to encode observed
similarity pairs from a graph.

1. Random Walks
2. Shortest Paths
3. Breadth First Search

The latent space of these models is a
graph representation.

[Taheri, Gimpel, Berger-Wolf , KDD’18]

LSTM Sequence Encoding

[Original Slide, Aynaz Taheri, used with permission]

References
[A. Sanfeliu; K-S. Fu (1983)]
[Niepert et al, ICML 2016]
[P. Yanardag and S. Vishwanathan, KDD’15]
[Taheri, Gimpel, Berger-Wolf, KDD’18]
[Vishwanathan et al, 2010]
[Zhang et al, AAAI’18]

https://ieeexplore.ieee.org/document/6313167/
https://arxiv.org/pdf/1605.05273.pdf
https://dl.acm.org/citation.cfm?id=2783417
http://www.kdd.org/kdd2018/files/deep-learning-day/DLDay18_paper_27.pdf
http://www.jmlr.org/papers/volume11/vishwanathan10a/vishwanathan10a.pdf
https://www.cse.wustl.edu/~muhan/papers/AAAI_2018_DGCNN.pdf

